Exercise 18

In Exercises 13 to 19, use set theoretic or vector notation or both to describe the points that lie in the given configurations.

The line passing through $(-5,0,4)$ and $(6,-3,2)$

Solution

The equation for a line is

$$
\mathbf{y}(t)=\mathbf{m} t+\mathbf{b}
$$

where \mathbf{m} is the direction vector, b is the position vector for a point on the line, and t is a parameter. Subtract the two given position vectors to get \mathbf{m}.

$$
\begin{aligned}
\mathbf{m} & =(-5,0,4)-(6,-3,2) \\
& =(-11,3,2)
\end{aligned}
$$

So the line in question can be written as

$$
\begin{aligned}
\mathbf{y}(t) & =(-11,3,2) t+(6,-3,2) \\
& =(-11 t, 3 t, 2 t)+(6,-3,2) \\
& =(-11 t+6,3 t-3,2 t+2)
\end{aligned}
$$

Since there's only one arbitrary constant t, the line is one-dimensional. The set of points on the line is described by

$$
\{(-11 t+6,3 t-3,2 t+2), t \in \mathbb{R}\}
$$

